控制系统分析与设计(四):典型环节的数学模型

控制系统分析与设计(四):典型环节的数学模型

文章目录

1.比例环节(放大环节)2.惯性环节3.积分环节4.微分环节5.振荡环节6.纯滞后环节

具有相同动态特性或者说具有相同传递函数的所有不同物理结构、不同工作原理的元器件,被认为是同一环节,即环节是按动态特性对控制系统各部分进行分类的。应用环节的概念,则物理结构上千差万别的控制系统都是由为数不多的某些环节组成的。典型环节归纳如下:

1.比例环节(放大环节)

输出以一定比例复现输入

y

(

t

)

=

K

u

(

t

)

y(t)=Ku(t)

y(t)=Ku(t)

G

(

s

)

=

Y

(

s

)

U

(

s

)

=

K

G(s)=\frac{Y(s)}{U(s)}=K

G(s)=U(s)Y(s)​=K

2.惯性环节

τ

d

d

t

y

(

t

)

+

y

(

t

)

=

K

u

(

t

)

\tau \frac{d}{dt}y(t)+y(t)=Ku(t)

τdtd​y(t)+y(t)=Ku(t)

G

(

s

)

=

Y

(

s

)

U

(

s

)

=

K

τ

s

+

1

G(s)=\frac {Y(s)}{U(s)}=\frac {K}{\tau s+1}

G(s)=U(s)Y(s)​=τs+1K​ 其中

τ

K

\tau -时间常数,K-比例系数

τ−时间常数,K−比例系数 惯性环节输出量不能立即跟随输入量的变化,存在时间上的延迟,可以用τ来度量。

惯性环节的阶跃响应:令u(t)=1(t)

U

(

s

)

=

1

s

U(s)=\frac 1{s}

U(s)=s1​

Y

(

s

)

=

U

(

s

)

G

(

s

)

=

1

s

K

τ

s

+

1

Y(s)=U(s)G(s)=\frac 1{s}*\frac K{\tau s+1}

Y(s)=U(s)G(s)=s1​∗τs+1K​ 且已知

L

[

1

(

t

)

]

=

1

s

,

L

[

e

α

t

]

=

1

s

+

α

L[1(t)]=\frac 1{s},L[e^{-\alpha t}]=\frac 1{s+\alpha}

L[1(t)]=s1​,L[e−αt]=s+α1​ 则将上式分解成两项之和为

Y

(

s

)

=

1

s

K

τ

s

+

1

=

A

s

+

B

s

+

1

τ

Y(s)=\frac 1{s}*\frac K{\tau s+1}=\frac A{s}+\frac B{s+\frac 1{\tau}}

Y(s)=s1​∗τs+1K​=sA​+s+τ1​B​

A

=

s

Y

(

s

)

s

=

0

=

K

τ

s

+

1

s

=

0

=

K

\left.A=sY(s) \right| _{s=0} =\left.\frac K{\tau s+1} \right| _{s=0}=K

A=sY(s)∣s=0​=τs+1K​∣∣∣∣​s=0​=K

B

=

(

s

+

1

τ

)

Y

(

s

)

s

=

1

τ

=

K

τ

s

s

=

1

τ

=

K

\left.B=(s+\frac 1{\tau})Y(s) \right| _{s=-\frac 1{\tau}}=\left.\frac{K}{\tau s} \right| _{s=-\frac 1{\tau}}=-K

B=(s+τ1​)Y(s)∣∣∣∣​s=−τ1​​=τsK​∣∣∣∣​s=−τ1​​=−K 即

Y

(

s

)

=

K

(

1

s

1

s

+

1

τ

)

Y(s)=K(\frac 1{s}-\frac 1{s+\frac 1{\tau}})

Y(s)=K(s1​−s+τ1​1​) 再作拉氏反变换得

y

(

t

)

=

L

1

[

Y

(

s

)

]

=

K

(

1

e

t

τ

)

y(t)=L^{-1}[Y(s)]=K(1-e^{-\frac t{\tau}})

y(t)=L−1[Y(s)]=K(1−e−τt​)

3.积分环节

d

d

t

y

(

t

)

=

K

u

(

t

)

y

(

t

)

=

K

u

(

t

)

d

t

\frac {d}{dt}y(t)=Ku(t) 或 y(t)=K \int u(t)dt

dtd​y(t)=Ku(t)或y(t)=K∫u(t)dt 作拉氏变换得

s

Y

(

s

)

=

K

U

(

s

)

sY(s)=KU(s)

sY(s)=KU(s)

G

(

s

)

=

Y

(

s

)

U

(

s

)

=

K

s

=

1

T

s

K

=

1

T

G(s)=\frac{Y(s)}{U(s)}=\frac {K}{s}=\frac 1{Ts}(有时令K=\frac 1{T})

G(s)=U(s)Y(s)​=sK​=Ts1​(有时令K=T1​) K-比例系数,T-积分时间常数

积分环节的阶跃响应:令u(t)=1(t),

U

(

s

)

=

1

s

U(s)=\frac 1{s}

U(s)=s1​

Y

(

s

)

=

U

(

s

)

G

(

s

)

=

K

s

2

Y(s)=U(s)G(s)=\frac K{s^2}

Y(s)=U(s)G(s)=s2K​

y

(

t

)

=

L

1

[

Y

(

s

)

]

=

K

t

y(t)=L^{-1}[Y(s)]=Kt

y(t)=L−1[Y(s)]=Kt

4.微分环节

c

(

t

)

=

τ

d

d

t

r

(

t

)

c(t)=\tau \frac{d}{dt}r(t)

c(t)=τdtd​r(t) τ - 时间常数,

G

(

s

)

=

C

(

s

)

R

(

s

)

=

τ

s

G(s)=\frac{C(s)}{R(s)}=\tau s

G(s)=R(s)C(s)​=τs 纯微分环节:

G

(

s

)

=

τ

s

G(s)=\tau s

G(s)=τs 一阶微分环节:

G

(

s

)

=

τ

s

+

1

G(s)=\tau s+1

G(s)=τs+1 二阶微分环节:

G

(

s

)

=

τ

2

s

2

+

2

ζ

τ

s

+

1

(

0

<

ζ

<

1

)

G(s)=\tau^2s^2+2\zeta \tau s+1 , (0<\zeta<1)

G(s)=τ2s2+2ζτs+1,(0<ζ<1)

微分环节的阶跃响应:令r(t)=1(t)

R

(

s

)

=

1

s

R(s)=\frac 1{s}

R(s)=s1​

G

(

s

)

=

τ

s

G(s)=\tau s

G(s)=τs

C

(

s

)

=

τ

C(s)=\tau

C(s)=τ 则

c

(

t

)

=

τ

δ

(

t

)

c(t)=\tau \delta(t)

c(t)=τδ(t) 注:δ(t)是脉冲函数,δ(0)=∞,δ(t!=0)=0,在整个时间轴上的积分是1微分环节实例 ①RC串联电路

Y

(

s

)

=

R

R

+

1

C

s

U

(

s

)

=

R

C

s

R

C

s

+

1

U

(

s

)

Y(s)=\frac R{R+\frac 1{Cs}}U(s)=\frac{RCs}{RCs+1}U(s)

Y(s)=R+Cs1​R​U(s)=RCs+1RCs​U(s)

G

(

s

)

=

Y

(

s

)

U

(

s

)

=

T

s

T

s

+

1

G(s)=\frac{Y(s)}{U(s)}=\frac{Ts}{Ts+1}

G(s)=U(s)Y(s)​=Ts+1Ts​ 其中T=RC - 时间常数 ②实际的比例微分电路

U

o

(

s

)

=

R

2

Z

+

R

2

U

i

(

s

)

U_o(s)=\frac{R_2}{Z+R_2}U_i(s)

Uo​(s)=Z+R2​R2​​Ui​(s) 其中

Z

=

R

1

1

C

s

R

1

+

1

C

s

=

R

1

R

1

C

s

+

1

Z=\frac{R_1 \frac 1{Cs}}{R_1+\frac 1{Cs}}=\frac{R_1}{R_1Cs+1}

Z=R1​+Cs1​R1​Cs1​​=R1​Cs+1R1​​

G

(

s

)

=

U

o

(

s

)

U

i

(

s

)

=

α

(

T

s

+

1

α

T

s

+

1

)

G(s)=\frac{U_o(s)}{U_i(s)}=\alpha(\frac{Ts+1}{\alpha Ts+1})

G(s)=Ui​(s)Uo​(s)​=α(αTs+1Ts+1​) 其中

T

=

R

1

C

,

α

=

R

2

R

1

+

R

2

T=R_1C,\alpha = \frac {R_2}{R_1+R_2}

T=R1​C,α=R1​+R2​R2​​

5.振荡环节

弹簧阻尼系统的传递函数:

G

(

s

)

=

1

m

s

2

+

f

s

+

k

G(s)=\frac 1{ms^2+fs+k}

G(s)=ms2+fs+k1​ RLC电路的传递函数:

G

(

s

)

=

1

L

C

s

2

+

R

C

s

+

1

G(s)=\frac{1}{LCs^2+RCs+1}

G(s)=LCs2+RCs+11​ 振荡环节的微分方程:

τ

2

d

2

d

t

2

y

(

t

)

+

2

ζ

τ

d

d

t

y

(

t

)

+

y

(

t

)

=

K

u

(

t

)

\tau^2\frac{d^2}{dt^2}y(t)+2\zeta\tau\frac{d}{dt}y(t)+y(t)=Ku(t)

τ2dt2d2​y(t)+2ζτdtd​y(t)+y(t)=Ku(t) 则其传递函数为:

G

(

s

)

=

Y

(

s

)

U

(

s

)

=

K

τ

2

s

2

+

2

ζ

τ

s

+

1

,

1

G(s)=\frac{Y(s)}{U(s)}=\frac K{\tau^2s^2+2\zeta\tau s+1}(时间常数形式,常数项是1)

G(s)=U(s)Y(s)​=τ2s2+2ζτs+1K​(时间常数形式,常数项是1)

G

(

s

)

=

Y

(

s

)

X

(

s

)

=

K

ω

n

2

s

2

+

2

ζ

ω

n

s

+

ω

n

2

s

2

1

G(s)=\frac{Y(s)}{X(s)}=\frac{K\omega_n^2}{s^2+2\zeta\omega_ns+\omega_n^2}(零极点形式,s^2 系数是1)

G(s)=X(s)Y(s)​=s2+2ζωn​s+ωn2​Kωn2​​(零极点形式,s2系数是1) 其中

ω

n

=

1

τ

无阻尼自然振荡频率ω_n=\frac 1{\tau}

无阻尼自然振荡频率ωn​=τ1​

ω

d

=

ω

n

1

ζ

2

阻尼自然振荡频率ω_d=ω_n\sqrt{1-\zeta^2}

阻尼自然振荡频率ωd​=ωn​1−ζ2

​ ζ为阻尼系数、阻尼比

振荡环节的阶跃响应:令0<ζ<1,K=1,r(t)=1(t),

R

(

s

)

=

1

s

R(s)=\frac 1{s}

R(s)=s1​

G

(

s

)

=

K

ω

n

2

s

2

+

2

ζ

ω

n

s

+

ω

n

2

G(s)=\frac{K\omega_n^2}{s^2+2\zeta\omega_ns+\omega_n^2}

G(s)=s2+2ζωn​s+ωn2​Kωn2​​

C

(

s

)

=

ω

n

2

s

(

s

2

+

2

ζ

ω

n

s

+

ω

n

2

)

C(s)=\frac{\omega_n^2}{s(s^2+2\zeta\omega_ns+\omega_n^2)}

C(s)=s(s2+2ζωn​s+ωn2​)ωn2​​ 类似惯性环节的阶跃响应,需要对分式分母作因式分解,令:

s

2

+

2

ζ

ω

n

s

+

ω

n

2

=

0

s^2+2\zeta \omega_ns+\omega_n^2=0

s2+2ζωn​s+ωn2​=0 则复数

s

=

ζ

ω

n

±

ζ

2

1

ω

n

s=-\zeta\omega_n \pm \sqrt{\zeta^2-1}\omega_n

s=−ζωn​±ζ2−1

​ωn​

s

=

ζ

ω

n

±

j

1

ζ

2

ω

n

=

ζ

ω

n

±

j

ω

d

s=-\zeta\omega_n \pm j\sqrt{1-\zeta^2}\omega_n=-\zeta\omega_n \pm j\omega_d

s=−ζωn​±j1−ζ2

​ωn​=−ζωn​±jωd​

C

(

s

)

=

ω

n

2

s

(

s

+

ζ

ω

n

+

j

ω

d

)

(

s

+

ζ

ω

n

j

ω

d

)

C(s)=\frac{\omega_n^2}{s(s+\zeta\omega_n+j\omega_d)(s+\zeta\omega_n-j\omega_d)}

C(s)=s(s+ζωn​+jωd​)(s+ζωn​−jωd​)ωn2​​ 可化成以下两种形式: ①套用L[e-αtsinωt]、L[e-αtcosωt]

C

(

s

)

=

ω

n

2

s

[

(

s

+

ζ

ω

n

)

2

+

ω

d

2

]

=

A

s

+

B

(

s

+

ζ

ω

n

)

(

s

+

ζ

ω

n

)

2

+

ω

d

2

+

C

ω

d

(

s

+

ζ

ω

n

)

2

+

ω

d

2

C(s)=\frac{\omega_n^2}{s[(s+\zeta\omega_n)^2+\omega_d^2]}=\frac{A}{s}+\frac{B(s+\zeta\omega_n)}{(s+\zeta\omega_n)^2+\omega_d^2}+\frac{C\omega_d}{(s+\zeta\omega_n)^2+\omega_d^2}

C(s)=s[(s+ζωn​)2+ωd2​]ωn2​​=sA​+(s+ζωn​)2+ωd2​B(s+ζωn​)​+(s+ζωn​)2+ωd2​Cωd​​

C

(

s

)

=

1

s

s

+

ζ

ω

n

(

s

+

ζ

ω

n

)

2

+

ω

d

2

ζ

ω

n

ω

d

ω

d

(

s

+

ζ

ω

n

)

2

+

ω

d

2

C(s)=\frac 1{s}-\frac{s+\zeta\omega_n}{(s+\zeta\omega_n)^2+\omega_d^2}-\frac{\zeta\omega_n}{\omega_d}\frac{\omega_d}{(s+\zeta\omega_n)^2+\omega_d^2}

C(s)=s1​−(s+ζωn​)2+ωd2​s+ζωn​​−ωd​ζωn​​(s+ζωn​)2+ωd2​ωd​​

c

(

t

)

=

1

e

ζ

ω

n

t

c

o

s

ω

d

t

ζ

ω

n

ω

d

e

ζ

ω

n

t

s

i

n

ω

d

t

=

1

e

ζ

ω

n

t

(

c

o

s

ω

d

t

+

ζ

1

ζ

2

s

i

n

ω

d

t

)

=

1

e

ζ

ω

n

t

1

ζ

2

(

1

ζ

2

c

o

s

ω

d

t

+

ζ

s

i

n

ω

d

t

)

=

1

e

ζ

ω

n

t

1

ζ

2

s

i

n

(

ω

d

t

+

ϕ

)

c(t)=1-e^{-\zeta\omega_nt} cos\omega_dt-\frac{\zeta\omega_n}{\omega_d}e^{-\zeta\omega_nt}sin\omega_dt =1-e^{-\zeta\omega_nt}(cos\omega_dt+{\frac{\zeta}{\sqrt{1-\zeta^2}}sin\omega_dt}) =1-\frac{e^{-\zeta\omega_nt}}{\sqrt{1-\zeta^2}}(\sqrt{1-\zeta^2}cos\omega_dt+\zeta sin\omega_dt) =1-\frac{e^{-\zeta\omega_nt}}{\sqrt{1-\zeta^2}}sin(\omega_dt+\phi)

c(t)=1−e−ζωn​tcosωd​t−ωd​ζωn​​e−ζωn​tsinωd​t=1−e−ζωn​t(cosωd​t+1−ζ2

​ζ​sinωd​t)=1−1−ζ2

​e−ζωn​t​(1−ζ2

​cosωd​t+ζsinωd​t)=1−1−ζ2

​e−ζωn​t​sin(ωd​t+ϕ) 令

ϕ

=

a

r

c

t

g

1

ζ

2

ζ

\phi=arctg\frac{\sqrt{1-\zeta^2}}{\zeta}

ϕ=arctgζ1−ζ2

​​ ②套用L[1(t)],L[e-αt],用留数的方法求

C

(

s

)

=

A

s

+

B

s

+

ζ

ω

n

+

j

ω

d

+

C

s

+

ζ

ω

n

j

ω

d

C(s)=\frac{A}{s}+\frac{B}{s+\zeta\omega_n+j\omega_d}+\frac{C}{s+\zeta\omega_n-j\omega_d}

C(s)=sA​+s+ζωn​+jωd​B​+s+ζωn​−jωd​C​

6.纯滞后环节

输出信号比输入信号滞后一段时间

c

(

t

)

=

r

(

t

τ

)

c(t)=r(t-\tau)

c(t)=r(t−τ) 其中τ - 滞后时间常数,作拉氏变换:

C

(

s

)

=

0

r

(

t

τ

)

e

s

t

d

t

C(s)=\int_0 ^ \infty {r(t-\tau)e^{-st}}dt

C(s)=∫0∞​r(t−τ)e−stdt令t-τ=ζ,则

C

(

s

)

=

0

r

(

ζ

)

e

s

(

ζ

+

τ

)

d

ζ

=

e

τ

s

0

r

(

ζ

)

e

s

ζ

d

ζ

=

e

τ

s

R

(

s

)

C(s)=\int_0^\infty {r(\zeta)e^{-s(\zeta+\tau)}d\zeta}=e^{-\tau s}\int_0^\infty{r(\zeta)e^{-s\zeta}}d\zeta=e^{-\tau s}R(s)

C(s)=∫0∞​r(ζ)e−s(ζ+τ)dζ=e−τs∫0∞​r(ζ)e−sζdζ=e−τsR(s)

G

(

s

)

=

C

(

s

)

R

(

s

)

=

e

τ

s

G(s)=\frac{C(s)}{R(s)}=e^{-\tau s}

G(s)=R(s)C(s)​=e−τs

相关故事

去哪里买正品塔罗牌?全面指南助你找到优质选择
365bet官方投注网址

去哪里买正品塔罗牌?全面指南助你找到优质选择

如果让宠物狗在外流浪,它们能活多久呢?
365bet官方投注网址

如果让宠物狗在外流浪,它们能活多久呢?

深入解析:MOBA游戏定义与发音及其市场影响力
bst365大陆投注

深入解析:MOBA游戏定义与发音及其市场影响力